Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Mds3 regulates morphogenesis in Candida albicans through the TOR pathway.

Identifieur interne : 001417 ( Main/Exploration ); précédent : 001416; suivant : 001418

Mds3 regulates morphogenesis in Candida albicans through the TOR pathway.

Auteurs : Lucia F. Zacchi [États-Unis] ; Jonatan Gomez-Raja ; Dana A. Davis

Source :

RBID : pubmed:20457806

Descripteurs français

English descriptors

Abstract

The success of Candida albicans as a major human fungal pathogen is dependent on its ability to colonize and survive as a commensal on diverse mucosal surfaces. One trait required for survival and virulence in the host is the morphogenetic yeast-to-hypha transition. Mds3 was identified as a regulator of pH-dependent morphogenesis that functions in parallel with the classic Rim101 pH-sensing pathway. Microarray analyses revealed that mds3 Delta/Delta cells had an expression profile indicative of a hyperactive TOR pathway, including the preferential expression of genes encoding ribosomal proteins and a decreased expression of genes involved in nitrogen source utilization. The transcriptional and morphological defects of the mds3 Delta/Delta mutant were rescued by rapamycin, an inhibitor of TOR, and this rescue was lost in strains carrying the rapamycin-resistant TOR1-1 allele or an rbp1 Delta/Delta deletion. Rapamycin also rescued the transcriptional and morphological defects associated with the loss of Sit4, a TOR pathway effector, but not the loss of Rim101 or Ras1. The sit4 Delta/Delta and mds3 Delta/Delta mutants had additional phenotypic similarities, suggesting that Sit4 and Mds3 function similarly in the TOR pathway. Finally, we found that Mds3 and Sit4 coimmunoprecipitate. Thus, Mds3 is a new member of the TOR pathway that contributes to morphogenesis in C. albicans as a regulator of this key morphogenetic pathway.

DOI: 10.1128/MCB.01540-09
PubMed: 20457806
PubMed Central: PMC2897559


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Mds3 regulates morphogenesis in Candida albicans through the TOR pathway.</title>
<author>
<name sortKey="Zacchi, Lucia F" sort="Zacchi, Lucia F" uniqKey="Zacchi L" first="Lucia F" last="Zacchi">Lucia F. Zacchi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455</wicri:regionArea>
<wicri:noRegion>Minnesota 55455</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gomez Raja, Jonatan" sort="Gomez Raja, Jonatan" uniqKey="Gomez Raja J" first="Jonatan" last="Gomez-Raja">Jonatan Gomez-Raja</name>
</author>
<author>
<name sortKey="Davis, Dana A" sort="Davis, Dana A" uniqKey="Davis D" first="Dana A" last="Davis">Dana A. Davis</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20457806</idno>
<idno type="pmid">20457806</idno>
<idno type="doi">10.1128/MCB.01540-09</idno>
<idno type="pmc">PMC2897559</idno>
<idno type="wicri:Area/Main/Corpus">001407</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001407</idno>
<idno type="wicri:Area/Main/Curation">001407</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001407</idno>
<idno type="wicri:Area/Main/Exploration">001407</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Mds3 regulates morphogenesis in Candida albicans through the TOR pathway.</title>
<author>
<name sortKey="Zacchi, Lucia F" sort="Zacchi, Lucia F" uniqKey="Zacchi L" first="Lucia F" last="Zacchi">Lucia F. Zacchi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455</wicri:regionArea>
<wicri:noRegion>Minnesota 55455</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gomez Raja, Jonatan" sort="Gomez Raja, Jonatan" uniqKey="Gomez Raja J" first="Jonatan" last="Gomez-Raja">Jonatan Gomez-Raja</name>
</author>
<author>
<name sortKey="Davis, Dana A" sort="Davis, Dana A" uniqKey="Davis D" first="Dana A" last="Davis">Dana A. Davis</name>
</author>
</analytic>
<series>
<title level="j">Molecular and cellular biology</title>
<idno type="eISSN">1098-5549</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Base Sequence (MeSH)</term>
<term>Candida albicans (genetics)</term>
<term>Candida albicans (growth & development)</term>
<term>Candida albicans (metabolism)</term>
<term>Candida albicans (pathogenicity)</term>
<term>DNA Primers (genetics)</term>
<term>DNA, Fungal (genetics)</term>
<term>Fungal Proteins (genetics)</term>
<term>Fungal Proteins (metabolism)</term>
<term>Gene Expression Regulation, Developmental (drug effects)</term>
<term>Gene Expression Regulation, Fungal (drug effects)</term>
<term>Genes, Fungal (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Morphogenesis (drug effects)</term>
<term>Morphogenesis (genetics)</term>
<term>Morphogenesis (physiology)</term>
<term>Mutation (MeSH)</term>
<term>Oligonucleotide Array Sequence Analysis (MeSH)</term>
<term>Signal Transduction (drug effects)</term>
<term>Sirolimus (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN fongique (génétique)</term>
<term>Amorces ADN (génétique)</term>
<term>Candida albicans (croissance et développement)</term>
<term>Candida albicans (génétique)</term>
<term>Candida albicans (métabolisme)</term>
<term>Candida albicans (pathogénicité)</term>
<term>Gènes fongiques (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Morphogenèse (effets des médicaments et des substances chimiques)</term>
<term>Morphogenèse (génétique)</term>
<term>Morphogenèse (physiologie)</term>
<term>Mutation (MeSH)</term>
<term>Protéines fongiques (génétique)</term>
<term>Protéines fongiques (métabolisme)</term>
<term>Régulation de l'expression des gènes au cours du développement (effets des médicaments et des substances chimiques)</term>
<term>Régulation de l'expression des gènes fongiques (effets des médicaments et des substances chimiques)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Séquence nucléotidique (MeSH)</term>
<term>Séquençage par oligonucléotides en batterie (MeSH)</term>
<term>Transduction du signal (effets des médicaments et des substances chimiques)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA Primers</term>
<term>DNA, Fungal</term>
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Candida albicans</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Expression Regulation, Developmental</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Morphogenesis</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Morphogenèse</term>
<term>Régulation de l'expression des gènes au cours du développement</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Candida albicans</term>
<term>Morphogenesis</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Candida albicans</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN fongique</term>
<term>Amorces ADN</term>
<term>Candida albicans</term>
<term>Morphogenèse</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Candida albicans</term>
<term>Fungal Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Candida albicans</term>
<term>Protéines fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Candida albicans</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Candida albicans</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Morphogenèse</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Morphogenesis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Base Sequence</term>
<term>Genes, Fungal</term>
<term>Humans</term>
<term>Mutation</term>
<term>Oligonucleotide Array Sequence Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Gènes fongiques</term>
<term>Humains</term>
<term>Mutation</term>
<term>Séquence nucléotidique</term>
<term>Séquençage par oligonucléotides en batterie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The success of Candida albicans as a major human fungal pathogen is dependent on its ability to colonize and survive as a commensal on diverse mucosal surfaces. One trait required for survival and virulence in the host is the morphogenetic yeast-to-hypha transition. Mds3 was identified as a regulator of pH-dependent morphogenesis that functions in parallel with the classic Rim101 pH-sensing pathway. Microarray analyses revealed that mds3 Delta/Delta cells had an expression profile indicative of a hyperactive TOR pathway, including the preferential expression of genes encoding ribosomal proteins and a decreased expression of genes involved in nitrogen source utilization. The transcriptional and morphological defects of the mds3 Delta/Delta mutant were rescued by rapamycin, an inhibitor of TOR, and this rescue was lost in strains carrying the rapamycin-resistant TOR1-1 allele or an rbp1 Delta/Delta deletion. Rapamycin also rescued the transcriptional and morphological defects associated with the loss of Sit4, a TOR pathway effector, but not the loss of Rim101 or Ras1. The sit4 Delta/Delta and mds3 Delta/Delta mutants had additional phenotypic similarities, suggesting that Sit4 and Mds3 function similarly in the TOR pathway. Finally, we found that Mds3 and Sit4 coimmunoprecipitate. Thus, Mds3 is a new member of the TOR pathway that contributes to morphogenesis in C. albicans as a regulator of this key morphogenetic pathway.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20457806</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>07</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5549</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>30</Volume>
<Issue>14</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Molecular and cellular biology</Title>
<ISOAbbreviation>Mol Cell Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Mds3 regulates morphogenesis in Candida albicans through the TOR pathway.</ArticleTitle>
<Pagination>
<MedlinePgn>3695-710</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/MCB.01540-09</ELocationID>
<Abstract>
<AbstractText>The success of Candida albicans as a major human fungal pathogen is dependent on its ability to colonize and survive as a commensal on diverse mucosal surfaces. One trait required for survival and virulence in the host is the morphogenetic yeast-to-hypha transition. Mds3 was identified as a regulator of pH-dependent morphogenesis that functions in parallel with the classic Rim101 pH-sensing pathway. Microarray analyses revealed that mds3 Delta/Delta cells had an expression profile indicative of a hyperactive TOR pathway, including the preferential expression of genes encoding ribosomal proteins and a decreased expression of genes involved in nitrogen source utilization. The transcriptional and morphological defects of the mds3 Delta/Delta mutant were rescued by rapamycin, an inhibitor of TOR, and this rescue was lost in strains carrying the rapamycin-resistant TOR1-1 allele or an rbp1 Delta/Delta deletion. Rapamycin also rescued the transcriptional and morphological defects associated with the loss of Sit4, a TOR pathway effector, but not the loss of Rim101 or Ras1. The sit4 Delta/Delta and mds3 Delta/Delta mutants had additional phenotypic similarities, suggesting that Sit4 and Mds3 function similarly in the TOR pathway. Finally, we found that Mds3 and Sit4 coimmunoprecipitate. Thus, Mds3 is a new member of the TOR pathway that contributes to morphogenesis in C. albicans as a regulator of this key morphogenetic pathway.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zacchi</LastName>
<ForeName>Lucia F</ForeName>
<Initials>LF</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gomez-Raja</LastName>
<ForeName>Jonatan</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Davis</LastName>
<ForeName>Dana A</ForeName>
<Initials>DA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI064054</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01-AI064054</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>05</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Biol</MedlineTA>
<NlmUniqueID>8109087</NlmUniqueID>
<ISSNLinking>0270-7306</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D017931">DNA Primers</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004271">DNA, Fungal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001483" MajorTopicYN="N">Base Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002176" MajorTopicYN="N">Candida albicans</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017931" MajorTopicYN="N">DNA Primers</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004271" MajorTopicYN="N">DNA, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018507" MajorTopicYN="N">Gene Expression Regulation, Developmental</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009024" MajorTopicYN="N">Morphogenesis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>5</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>5</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20457806</ArticleId>
<ArticleId IdType="pii">MCB.01540-09</ArticleId>
<ArticleId IdType="doi">10.1128/MCB.01540-09</ArticleId>
<ArticleId IdType="pmc">PMC2897559</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Cell Biol. 2000 Feb;20(3):971-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10629054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Infect Immun. 2000 Oct;68(10):5953-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10992507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2000 Dec 14-28;10(24):1574-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11137008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 9;276(10):7027-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11096119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2001 Sep 3;20(17):4742-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11532938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antimicrob Agents Chemother. 2001 Nov;45(11):3162-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11600372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2001 Nov;42(3):673-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11722734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2001 Dec;12(12):4103-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11739804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jan 10;415(6868):141-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11805826</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 May 14;99(10):6784-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Jul 26;110(2):163-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Jul;10(1):163-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12150916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2002 Aug;5(4):366-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12160854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2002 Nov;22(21):7428-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12370290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2008 Mar 14;29(5):552-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18342603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Med Chem. 2008;15(12):1192-208</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18473813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2008 Jul;69(1):201-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18466294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Neurosci. 2008 Sep;39(1):118-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18620060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2008 Nov;10(11):2180-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18627379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jan 23;284(4):2522-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19015262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2009 Feb;5(2):e1000294</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19197361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Microbiol Infect. 2009 Jan;15 Suppl 1:17-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19220347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 Feb;181(2):511-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19087957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2009 Mar;181(3):861-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19104072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2009 Jun;295(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19473245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 2009 Jun 19;30(6):832-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19538929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2009 Jul;26(7):399-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19504625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2009 Aug;12(4):365-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19632143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1997 Nov;147(3):1351-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9383076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Oct;181(20):6339-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10515923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Dec;54(5):1335-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15554973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2005 Jan;4(1):63-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15643061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Aug 5;309(5736):938-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2005 Aug;4(8):1493-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16087754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2005 Nov;7(11):1546-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16207242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2005 Nov;4(11):1794-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16278446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Feb 10;124(3):471-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16469695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Mar 30;440(7084):631-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16429126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2006 Jul;2(7):e63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16839200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Dec;162(4):1573-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12524333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2003 Apr 28;161(2):333-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12719473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Apr;11(4):895-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12718876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Jun;11(6):1467-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12820961</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci STKE. 2003 Jul 15;2003(191):PE27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12865498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2004;279:19-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14560949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2004;279:53-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14560951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2003 Dec;149(Pt 12):3629-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14663094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Jan;24(1):338-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14673167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2004 Feb;51(3):691-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14731272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2004 Mar;286(3):C507-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14592809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 12;279(11):10270-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14679193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2004 Jun 7;165(5):697-707</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15184402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 2004 Aug;7(4):350-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15358253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Antibiot (Tokyo). 1975 Oct;28(10):721-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1102508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Aug 23;253(5022):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1715094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Jul 16;74(1):205-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8334704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1993 Oct;13(10):6012-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8413204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 Oct;127(2):373-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7929582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1994 Dec 9;266(5191):1723-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7992058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1995 Jun;59(2):304-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7603412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1996 Jun;16(6):2744-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8649382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Aug 1;10(15):1904-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8756348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3070-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9096347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1997 Sep 5;90(5):939-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9298905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Feb 12;274(7):4266-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9933627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Mar;181(6):1868-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10074081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Microbiol. 1998 Dec;1(6):687-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10066539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 May 17;18(10):2782-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Sep 28;443(7110):415-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17006507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2006 Oct 16;25(48):6373-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17041623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2006 Dec;5(23):2729-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17172843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2007 Jun 19;17(12):1007-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17540568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2007 Nov;66(4):858-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17927701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Dec;181(24):7516-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10601209</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1999 Dec;181(24):7524-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10601210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2000 Jan;10(1):17-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10603472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Dec 21;96(26):14866-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10611304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1999 Dec 15;13(24):3271-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10617575</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Davis, Dana A" sort="Davis, Dana A" uniqKey="Davis D" first="Dana A" last="Davis">Dana A. Davis</name>
<name sortKey="Gomez Raja, Jonatan" sort="Gomez Raja, Jonatan" uniqKey="Gomez Raja J" first="Jonatan" last="Gomez-Raja">Jonatan Gomez-Raja</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Zacchi, Lucia F" sort="Zacchi, Lucia F" uniqKey="Zacchi L" first="Lucia F" last="Zacchi">Lucia F. Zacchi</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001417 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001417 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20457806
   |texte=   Mds3 regulates morphogenesis in Candida albicans through the TOR pathway.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20457806" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020